

Thermodynamics of Energy Conversion and Storage

Prof. Dr. Andreas ZÜTTEL

Assistant: Yasemen Kuddusi

EXERCISES 14

1) Compare the size and weight of the energy storage in batteries and compressed air with the energy of a petrol tank (70 liters).

$$70 \text{ l} * 10 \text{ kWh} = 700 \text{ kWh}$$

Batteries: 0.2 kWh/kg therefore $700 \text{ kWh} / 0.2 \text{ kWh/kg} = 3500 \text{ kg}$ of batteries

Compressed air: 0.1 kWh/kg therefore $700 \text{ kWh} / 0.1 \text{ kWh/kg} = 7000 \text{ kg}$ of compressed air storage

2) How much hydrogen is in a 50 liter cylinder at 200 bar?

ideal gas equation: $p \cdot V = n \cdot R \cdot T$ therefore $p \cdot V \cdot M / R \cdot T = m$

$$m = 0.05 \text{ m}^3 \cdot 1.013 \cdot 10^5 \text{ Pa} \cdot 200 \cdot 2 \text{ g/mol} / 8.314 \text{ J/mol} \cdot \text{K} \cdot 298 \text{ K} = 0.817 \text{ kg}$$

3) How thick is the wall of a 50 liter hydrogen steel cylinder storing at 200 bar.

$$d_w/d_a = p/(2\sigma+p) = 200 \cdot 10^5 / (2 \cdot 1.650 \cdot 10^9 + 200 \cdot 10^5) = 0.006$$

$$0.05/1.5/\pi = r^2 \text{ therefore } r = 0.103 \text{ and } d_a = 0.206 \text{ m}$$

$$d_w = 0.206 \text{ m} \cdot 0.006 = 1.24 \text{ mm}$$

4) Calculate the density of hydrogen in a metal hydride.

1.4 mass% hydrogen in LaNi_5

$$1.4 \text{ kg in } 100 \text{ kg} / 7000 \text{ kg/m}^3 = 0.0143 \text{ m}^3 \text{ therefore } 98 \text{ kg/m}^3$$

5) Calculate the amount of hydrogen necessary to reach the flammability limit in a room of $5 \times 10 \times 2.8 \text{ m}^3$.

Flammability limit at 300 K is 4vol%. Volume of the room is 140 m^3 . 4Vol.% of hydrogen is 5.6 m^3 , which is 28 liter at 200 bar.